NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

```
NPTEL Video Course - Electronics and Communication Engineering - Neural Networks and Applications
Subject Co-ordinator - Prof. Somnath Sengupta
Co-ordinating Institute - IIT - Kharagpur
Sub-Titles - Available / Unavailable | MP3 Audio Lectures - Available / Unavailable
Lecture 1 - Introduction to Artificial Neural Networks
Lecture 2 - Artificial Neuron Model and Linear Regression
Lecture 3 - Gradient Descent Algorithm
Lecture 4 - Nonlinear Activation Units and Learning Mechanisms
Lecture 5 - Learning Mechanisms-Hebbian, Competitive, Boltzmann
Lecture 6 - Associative memory
Lecture 7 - Associative Memory Model
Lecture 8 - Condition for Perfect Recall in Associative Memory
Lecture 9 - Statistical Aspects of Learning
Lecture 10 - V.C. Dimensions
Lecture 11 - Importance of V.C. Dimensions Structural Risk Minimization
Lecture 12 - Single-Layer Perceptions
Lecture 13 - Unconstrained Optimization
Lecture 14 - Linear Least Squares Filters
Lecture 15 - Least Mean Squares Algorithm
Lecture 16 - Perceptron Convergence Theorem
Lecture 17 - Bayes Classifier & Perceptron
Lecture 18 - Bayes Classifier for Gaussian Distribution
Lecture 19 - Back Propagation Algorithm
Lecture 20 - Practical Consideration in Back Propagation Algorithm
Lecture 21 - Solution of Non-Linearly Separable Problems Using MLP
Lecture 22 - Heuristics For Back-Propagation
Lecture 23 - Multi-Class Classification Using Multi-layered Perceptrons
Lecture 24 - Radial Basis Function Networks
Lecture 25 - Radial Basis Function Networks
Lecture 26 - Posed Surface Reconstruction
Lecture 27 - Solution of Regularization Equation
Lecture 28 - Use of Greens Function in Regularization Networks
Lecture 29 - Regularization Networks and Generalized RBF
```

NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

- Lecture 30 Comparison Between MLP and RBF
- Lecture 31 Learning Mechanisms in RBF
- Lecture 32 Introduction to Principal Components and Analysis
- Lecture 33 Dimensionality reduction Using PCA
- Lecture 34 Hebbian-Based Principal Component Analysis
- Lecture 35 Introduction to Self Organizing Maps
- Lecture 36 Cooperative and Adaptive Processes in SOM
- Lecture 37 Vector-Quantization Using SOM