NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

```
NPTEL Video Course - Chemical Engineering - Chemical Reaction Engineering 1 (Homogeneous Reactors)
Subject Co-ordinator - Prof K. Krishnaiah
Co-ordinating Institute - IIT - Madras
                                        MP3 Audio Lectures - Available / Unavailable
Sub-Titles - Available / Unavailable
Lecture 1 - Motivation and Introduction - Part I
Lecture 2 - Motivation and Introduction - Part II
Lecture 3 - What is Chemical Engineering - Part I
Lecture 4 - What is Chemical Engineering - Part II
Lecture 5 - What is Chemical Reaction Engineering - Part I
Lecture 6 - What is Chemical Reaction Engineering - Part II
Lecture 7 - Homogeneous and Heterogeneous Reactions - Part I
Lecture 8 - Homogeneous and Heterogeneous Reactions - Part II
Lecture 9 - Basics of Kinetics and Contacting
Lecture 10 - Design of Batch reactors - Part I
Lecture 11 - Design of Batch reactors - Part II
Lecture 12 - Basics of Plug Flow Reactor - Part I
Lecture 13 - Basics of Plug Flow Reactor - Part II
Lecture 14 - Design of Plug Flow Reactors - Part I
Lecture 15 - Design of Plug Flow Reactors - Part II
Lecture 16 - Basics of Mixed Flow Reactors
Lecture 17 - Design of Mixed Flow Reactors
Lecture 18 - Basics of Kinetics
Lecture 19 - Kinetics of Heterogeneous reactions - Part I
Lecture 20 - Kinetics of Heterogeneous reactions - Part II
Lecture 21 - Kinetics of Heterogeneous reactions - Part III
Lecture 22 - Kinetics of Homogeneous reactions
Lecture 23 - Reaction rate for Homogeneous reactions
Lecture 24 - Gas Phase Homogeneous reactions
Lecture 25 - (Continued...) And later Reactor Design of PFR
Lecture 26 - Reactor Design for MFR and Combination of reactors
Lecture 27 - PFR and MFR in series.
Lecture 28 - Unsteady state MFR and PFR
Lecture 29 - Recycle Reactors
```

NPTEL Video Lecture Topic List - Created by LinuXpert Systems, Chennai

```
Lecture 30 - Recycle Reactors (Autocatalytic reactions) - Part I
Lecture 31 - Recycle Reactors (Autocatalytic reactions) - Part II
Lecture 32 - Multiple Reactions - Part I
Lecture 33 - Multiple Reactions - Part II
Lecture 34 - Multiple Reactions - Part III
Lecture 35 - Multiple Reactions - Part IV
Lecture 36 - Multiple Reactions - Part V
Lecture 37 - Multiple Reactions - Part VI
Lecture 38 - Non-Isothermal Reactors - Part I
Lecture 39 - Non-Isothermal Reactors - Part II
Lecture 40 - Non-Isothermal Reactors (Graphical Design)
Lecture 41 - Non-Isothermal Reactors contd. & Adiabatic Reactors
Lecture 42 - Non-Isothermal Reactors (Graphical Design) (Continued...)
Lecture 43 - Non-Isothermal Batch Reactors
Lecture 44 - Non-isothermal Plug Flow Reactors - Part I
Lecture 45 - Non-isothermal Plug Flow Reactors - Part II
Lecture 46 - Adiabatic Plug Flow Reactors
Lecture 47 - Non-isothermal Mixed Flow Reactors
Lecture 48 - Non-isothermal Mixed Flow Reactors (Continued...) (Multiple steady states) - Part I
Lecture 49 - Non-isothermal Mixed Flow Reactors (Continued...) (Multiple steady states) - Part II
Lecture 50 - Non-Ideal Flow and Residence Time Distributions (RTD) basics - Part I
Lecture 51 - Non-Ideal Flow and Residence Time Distributions (RTD) basics - Part II
Lecture 52 - RTD for various reactors (Continued...) Part I
Lecture 53 - RTD for various reactors (Continued...) Part II
Lecture 54 - Diagnosing the ills of equipments and Various RTD Models
Lecture 55 - Dispersion Model
Lecture 56 - Dispersion with reaction Model and Tanks in Series Model
Lecture 57 - Multi-parameter model (MFR with dead space and bypass)
Lecture 58 - Direct use of RTD to predict conversion (Macro and Micro-fluid as well as Macro & Micro-mixing (
Lecture 59 - Direct use of RTD to predict conversion (Macro and Micro-fluid as well as Macro & Micro-mixing (
Lecture 60 - Direct use of RTD to predict conversion (Macro and Micro-fluid as well as Macro & Micro-mixing (
```